
JOURNAL OF 
CHROMATOGRAPHY A 

ELSEVIER Journal of Chromatography A, 686 (1994) 11-20 

Measurement of narrow-distribution polydispersity using multi- 
angle light scattering 

David W. Shortt 
Wyutt Trchnology Corporation. 81J2 E. Cvtu Street. Santa Barbara. CA 931113, lJ.YA 

First received 17 May 1YY~; revised manuscript received 25 July 1994 

Abstract 

Molecular radius information obtained with multi-angle laser light scattering combined with gel permeation 
chromatography was used to obtain an upper limit for the polydispersity $$,,,/A?, of a narrow-distribution 

polystyrene standard dissolved in toluene. The radius obtained by light scattering is independent of any other 
detector and so is not affected by interdetector delay volumes or interdetector broadening. The value obtained for 
%?,,,/A?, was 1.00096 * 0.00004, much closer to unity than previously reported. Column broadening was found to be 
responsible for nearly all the observed peak width. 

1. Introduction 

The molecular mass distribution (MMD) of 
samples prepared by termination-free chain addi- 

tion polymerization is theoretically close to a 
Poisson distribution. in which the molecular 

mass polydispersity $$,/A?, (where em, is the 

weight-average molecular mass and M, is the 
number-average molecular mass) is predicted to 
be very close to unity [l-3]. In practice. the 
methods available to measure whole-polymer 62, 
and M,, directly (for example, light scattering 

and osmometry, respectively) are only accurate 
to l-296, making determination of polydisper- 
sities smaller than about 1.03 impossible. Gel 

permeation chromatography (GPC) allows sam- 
ples to be separated by molecular size and then 
detected, typically by a differential refractive 

index (DRI) detector. In traditional GPC one 
injects a series of narrow-distribution polymer 
standards of known molecular masses M to 

create a calibration curve [4] of log A4 vs. elution 
volume I/, The DRI chromatogram for an un- 

known sample is then used along with the 
calibration curve to determine the molecular 

mass averages and MMD for the unknown [5]. A 
number of factors affect the accuracy of this 
determination, among them conformation differ- 
ences between the calibration standards and the 

unknown, and band broadening in the chromato- 
graphic system. When studying narrow-MMD 
samples, band broadening is a particularly im- 

portant issue and has been discussed by many 
researchers [6-S]. The presence of broadening 
makes calculating the polydispersity of very 

narrow distribution samples difficult. In this 
paper we shall use the term “column broaden- 
ing” to refer to any broadening prior to the first 
detector in the system, and “interdetector 
broadening” to refer to subsequent broadening 
occurring in various detectors’ flow cells and/or 

connecting tubing. Interdetector broadening is 
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particularly important when signals from various 

instruments are compared. 

With the use of molecular mass-sensitive tech- 
niques such as light scattering (LS) combined 
with GPC it is possible to determine molecular 

masses directly [9]. Since the LS signal is propor- 
tional to the product of molecular mass and 
concentration, one can determine the molecular 

mass by taking the ratio of the LS and DRI 
signals. This technique allows accurate molecular 
mass and radius determination for each slice 

across a sample peak without column calibration. 
When using GPC-LS, the effect of broadening is 
to make the calculated molecular mass values 

more constant than they should be, decreasing 
the calculated polydispersity of the sample. In 
addition, interdetector broadening which occurs 
between the LS and DRI detectors causes the 

calculated molecular mass values to be incorrect 
because one signal is broadened more than the 
other. The presence of interdetector broadening 

makes determination of polydispersities less than 
1.01 very difficult, even when corrections are 

applied. However, by using thermal field flow 
fractionation to correct for interdetector 
broadening, Giddings [lo] showed that a poly- 

styrene sample with a nominal polydispersity of 
1.06 actually had a value closer to 1.003. 

Furthermore, in order to combine properly the 
signals from multiple instruments, it is important 

to determine the interdetector delay volume 
accurately. The effect of changes in assumed 

delay volume on molecular mass determinations 
with LS has been discussed in detail by Wyatt 
and Papazian [II]. The effect is relatively small; 

it does not affect the calculation of M,,, at all, 
and it changes M,, by only a few percent. 
Unfortunately. when we are attempting to calcu- 

late accurately the polydispersity of a narrow- 
MMD peak, an effect of even a few percent 
makes molecular mass measurements unsuitable 

for this purpose. 
Multi-angle laser-light scattering (MALLS) 

provides not only the molecular mass but also 

the mean square molecular radius. At the low 
concentrations typical of GPC separations, the 
calculated molecular radius values are indepen- 

dent of the DRI detector, so they depend neither 

on the interdetector delay volume nor on inter- 
detector broadening. Thus molecular radius is an 
excellent way to study the polydispersity of 
narrow-MMD samples. This paper describes a 

new technique which uses the molecular radius 
values obtained by GPC-MALLS to calculate 
the polydispersity of a narrow-MMD polystyrene 
standard, taking proper account of column 

broadening effects. First a model of a simple 
chromatographic system with Gaussian peaks 

and Gaussian broadening is presented. Effects of 
interdetector delay volume and broadening on 
the calculation of molecular mass and radius are 
discussed. Data from narrow-MMD polystyrene 
standards are presented, and the radius infor- 
mation is used to place a new upper limit on the 

polydispersity of one of these narrow standards. 

2. Theory 

2.1, Model of a simple chromatographic system 

Let us consider a simple chromatographic 
system. We shall assume a single Gaussian peak. 
This means the normalized concentration signal 
is given by 

1 exp [-4 In 2(V- V,)‘/W~] (1) 

where m, is the mass of solute in the peak, V, is 
the peak elution volume and w0 is the full width 

at half maximum (FWHM) of the true, un- 
broadened peak. We further assume that the 
column separation is log-linear according to 
molecular mass as 

M(V) = lo”+ R” (2) 

where A and B are constants and M(V) is the 
molecular mass at elution volume V. Likewise, if 
the separated molecules have a conformation 
(random coil. rigid rod, sphere, etc.) which is 

independent of molecular mass, then the column 
separation in root mean square (rms) radius 
(T’) I!’ follows a similar relation: 
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( r2> I yvj = 10C’+ U1’ 
(3) 

where {r2) ‘12(V) is the rms radius of the mole- 
cules at elution volume V. 

The molecular mass polydispersity is equal to 
the ratio M,IM,, where &i, and M, are given 

bY ]I21 

i 
h(V) dV 

M, = 

h(V)IM(V) dV 

r M(V)h(V) dV 
M, = ’ (3) 

h(V) dV 

The limits of integration are taken to be --r to 
+ a. Integrating these relations using Eqs. 1 and 

2 gives 

M,/M, = exp[(ln lO)‘B’u’iiX In 21 (5) 

For a suitably narrow-distribution sample, Bu:,, 
<<I, and we have the following approximation: 

M,lM, f 1 + (In lO)‘B’~p,2,/8 In 2 

= 1 + 0.96B ‘u’;, (6) 

Thus the polydispersity depends only on the 
product Bw,,. Even though real chromatographic 
peaks differ somewhat from Gaussian, peaks 

from narrow-distribution samples can be fit quite 
successfully by a Gaussian line shape, and so this 

relation provides a reasonable estimate of the 
polydispersity. 

2.2. Light scattering 

The following equation 1131 describes the 
Rayleigh-Gans-Debye (see [Id]) approximation 
for the Rayleigh ratio R(# ) of light scattered at 

an angle 8 by macromolecules having a weight- 
average molecular mass M,, , in the limit of small 

concentrations c: 

Here K* is an optical constant given by 

(7) 

K* = 4~L(dn/dcj’n:,:NAh:, (8) 

for vertically polarized incident light, where n, is 
the solvent refractive index, NA is Avogadro’s 

number, A,, is the vacuum wavelength of the 
incident light, and dnldc is the refractive index 
increment. The scattering function P(B) de- 

scribes the angular dependence of the scattered 
light and will be discussed in more detail below. 
Here it suffices to remark that P(B -+ 0) = 1 for 

any molecular conformation or size satisfying the 
Rayleigh-Gans-Debye approximation. The 
quantity A2 is the second virial coefficient which 

describes solvent-solute interactions and can 
usually be ignored for the low concentrations 
common in GPC. Furthermore, in chromatog- 
raphy we assume a separated sample so that at 
each elution volume V only one molecular mass 
species is present, implying A?, = M. Thus for 

GPC we have the following useful expression: 

R(0) = K*cMP(B) (9) 

In the low-angle limit R(8-+ 0) = K*cM. We 
shall explore the implications of imperfect chro- 

matographic separation in Section 2.4 below. 
We define U(V) to be the measured light- 

scattering signal [proportional to R(8)] in the 
limit d-+0. Thus LS(V) is proportional to the 
product of the molecular mass M(V) and the 
concentration signal h(V): 

LS(V) x M(V)h(V) m exp[ln 10 (A + SV) 

- 4 In 2 (V- Q/w,‘,] (10) 

which can be rewritten as 

LS(V) x 

exp[-4 In 2 [V-v, -~Bw~)‘/w~] 

ignoring constant additive terms in the exponen- 
tial. This implies that the LS signal is itself a 
Gaussian with the same FWHM but shifted with 

respect to h(V) by a volume (ln lO)Bw,‘,/8 In 2. 
Since B, the slope of the molecular mass cali- 
bration curve, is typically negative in GPC, the 
shift is to smaller elution volumes. When analyz- 
ing data, we measure LS(V) from the light- 
scattering instrument, h(V) from the DRI detec- 
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tar, and we take the ratio LS(V)/h(V) to re- 
cover M(V). 

2.3. Size information from multi-angle right 
scattering 

Multi-angle light scattering allows determina- 

tion of the molecular size as well as the molecu- 
lar mass. The angular dependence of the scat- 
tered light is described by the scattering function 
P(O), where 8 is the scattering angle. For mole- 
cules smaller than about A/20, where A is the 
wavelength of the scattered light in solution, 

P(B ) can be well approximated by 

P(B) = 1 - @$. (2) sin’(B/2) (12) 

where (r2) is the mean square radius of the 
molecules. For larger molecules, more terms 
containing higher powers of sin’(8/2) are re- 

quired. Alternatively, one can use a specific 
model for P(0 ) which assumes a certain molecu- 
lar conformation such as random coil, rigid rod, 
or sphere. For example, ideal random coils [ 151 
scatter according to 

P(0) = 2(eP” - 1 +x)/x’ 

where 

x = (4nlA)‘( r’} sin’(Oi2) (14) 

In any case, the mean square radius (r2} is 

proportional to the low-angle derivative of P(8 ) 
with respect to sin’ (O/2). For any given slice, 
R(8) = P(O) as long ai c is small enough that the 
A2 term in Eq. 7 can be neglected. Therefore, to 
calculate (r2) for a particular slice one fits the 
angular LS data R(0 ) to one of the above 

models. For example, using Eqs. 9 and 12 gives 
the complete model 

R(B) =a[1 -$. {r’) sin’(Oi2) 1 (15) 

where a is equal to K*cM. Since A is known, Eq. 

15 is a model having two parameters, a and {r’}. 
Note that a serves as a scaling factor; if we 

arbitrarily double all the R(B ) values, a doubles 
but (r2} remains unchanged. Thus the value of 

(r’} determined from the model is independent 
of the value of a, and therefore of c, and hence 

independent of the concentration detector and 
interdetector delay volume. Even if we had no 
concentration signal, we would still obtain {r’) 
correctly (of course, in this case we would obtain 
a meaningless value of M). The independence of 
(r’) from c is extremely important, for it will 
allow us to make meaningful statements about 
the polydispersity of narrow-distribution stan- 
dards without the errors associated with delay 

volume inaccuracy or interdetector broadening. 

2.4. Ef;fect of peak broadening on molecular 
masses and radii calculated from light-scattering 
data 

We shall assume Gaussian broadening [4] 

characterized by a FWHM of wG. Then the 
normalized (i.e., unit area) broadening kernel is 

(16) 

If we have a concentration chromatogram 

h(V), the broadened chromatogram F(V) is then 
given by Tung’s convolution integral [16] 

W) = J h(YPw- Y> dY (17) 

where the limits of integration are taken to be 
-m to + x. It is not difficult to show that the 

convolution of two Gaussian peaks is itself 
Gaussian and that the peak widths add in 
quadrature. For example, the observed FWHM 

of F(V) is given by 

The LS signal is also broadened, and we must 
account for the fact that when multiple molecu- 
lar mass species are present, the amount of light 

scattered is proportional to the weight average of 
those species. The observed molecular mass as 
measured by the LS detector is the ratio of the 
broadened LS signal to the broadened concen- 
tration signal: 



Integration of Eq. 19 is tedious but straight- 
forward; the result is that M,,,,,(V). like M(V), is 
log-linear but with a slope B,,hi given by the 

simple expression 

B (,h\ = Bcl!&~,,, (30) 

Details of the derivation of Eq. 20 are given in 

the Appendix. Thus the effect of broadening on 
the combination of DRI and LS detectors is to 
reduce the magnitude of the apparent slope of 

the calibration curve. making the peak appear to 
have a smaller polydispcrsity. For a broad dis- 
tribution peak UJ~,~,< 2 \v,, and B ,,,,, = B. For a 
very-narrow-distribution peak, however, u’<),,, >> 

wo and B&s approaches zero. Therefore any 
estimate of the polydispcrsity of a narrow-dis- 
tribution peak must include the effects of 
broadening. 

A similar anaiysis may bc performed to obtain 
the observed rms radius (Y~),‘,~:(V). In this case, 
however, it is the so-called z-average mean 
square radius, not the weight average. to which 

the LS detector responds [ 17). The result for the 
observed rms radius i\ 

which is again log-linear with ;I slope LJ(,,,, given 

by an cxprcssion dircctl!, analogous to Ey. 20: 

I> i ,,,, = rh~fj: w,,,, (22) 

Details of this dcrivatlon arc given in the Appen- 
dix. This relation allows us tcl recover the un- 
broadened width MS,) if WC know the observed 
width IV,,,,, . the observed rms radius calibration 
slope L)&, . and the true calibration slope D. The 
quantity w,,,,, is easy to obtain from a samplc’4 
chromatogram. and L),,,,\ can be obtained bc 
measuring the rms radius at each slice across the 

sample peak. The true calibration slope D can be 
obtained by injecting a series of narrow stan- 
dards and constructing the rms radius calibration 
curve. Once w,, has been determined, it can be 
used in Eq. 6 to obtain the polydispersity. This is 
the procedure we shall use below. 

In calculating the effect of broadening on 
molecular mass we have assumed that the peak 
undergoes no additional broadening in passing 

from one instrument to the other. If some 
interdetector broadening occurs, the ratio of LS 
to DRI gives calculated molecular masses which 

do not lie on a log-linear curve, and the results 
depend on which detector is connected first in 
line. Typically the LS detector is first, followed 

by the DRI detector. In this case the DRI signal 
is broadened more than the LS signal, and the 
calculated molecular masses are too large at the 

peak center and too small on either side [18]. 
This effect, like the delay volume effect dis- 
cussed by Wyatt and Papazian [ 111, is small but is 

more pronounced for narrow peaks. Interdetec- 
tor broadening depends heavily on the particular 
flow design of the various instruments and may 

be far from Gaussian. The calculated radius is 
not affected by interdetector broadening since 
the DRI signal is not used. This is another 

reason why radius measurements, if available, 
are superior to molecular mass measurements 
when studying the polydispersity of narrow-dis- 

tribution samples. 

3. Experimental 

Data were collected from a chromatograph 

made up of an LDC Analytical Mode1 396-57 
pump, two columns (300 mm x 8 mm; MZ 
Analysentechnik, Mainz, Germany; styrene-di- 

vinylbenzene; 5 pm particle diameter; lo6 and 
10J i\ pore diameter; ambient temperature), a 
Wyatt Technology Model DAWN DSP-F laser 

photometer and a Waters Model 410 differential 
refractometer. The mobile phase was toluene 
and the flow-rate was 1.0 ml/min. The delay 

volume between the LS instrument and the DRI 
detector was measured to be 184 ~1, meaning 
that the DRI detector’s cell was 184 ~1 down- 
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stream of the LS detector’s cell. Stainless-steel 

tubing with I.D. 0.25 mm was used for all 
connections. A series of Pressure Chemical poly- 
styrene standards of nominal molecular masses 

30, 65, 130. 200, 400 and 950 kgimol was 
injected. The injection volume for all samples 
was 100 ~1. Column loading ranged from 0.6 mg 

for the 30 kgimol sample to 0.03 mg for the 950 
kgimol sample. Data points were collected every 
1.0 s. Molecular masses and rms radii were 

calculated independently for each sample using 
Wyatt Technology’s ASTRA chromatography 

software version 1.1.5 for Macintosh. 

4. Analysis and results 

First, all the data were analyzed to verify that 
reasonable values are obtained for both molecu- 

lar mass and radius for the samples of interest. 
Table 1 shows the results for the samples used in 
this study. Molecular mass and radius values in 

Table 1 were calculated for slices near the tops 
of the respective peaks. Since the polydispersity 
calculations will depend on precise radius mea- 

surements, it is important to use data with a high 
signal-to-noise ratio. The nominal 400 and 950 
kg/mol samples gave the highest relative preci- 

sion for the rms radius. Although column cali- 
bration is not necessary to determine molecular 
masses or sizes from LS data, in order to 

calculate the polydispersity of narrow standards 
it will prove necessary to measure the slope of 
log (rZ)‘8Z vs. V and log M vs. V to obtain the 

coefficients B and 17 in Eqs. 2 and 3. We expect 

I I I I I 
11 12 13 14 15 16 17 

Elution volume (ml ) 

Fig. I. YO” LS and DRI signals for nominal 300 kgimol 

polystyrene in toluene. 

these coefficients to be functions of V since the 
calibration curves are not exactly log-linear. 
Thus it is important to measure B and D at the 

elution volume of interest. For these reasons, the 
400 kg/mol sample was chosen for polydispersity 
analysis, with the 200 and 950 kg/mol samples 

providing additional data used to determine B 
and D. 

Fig. 1 shows the 90” LS and DRI signals for 

the 400 kgimol sample as a function of elution 
volume. The FWHM u’,~~ of the peaks is 0.54 + 
0.01 ml. There is no statistically significant differ- 

ence in the FWHM for the two peaks, although a 
small amount of additional tailing can be seen in 

the DRI signal on close examination. Peaks for 
the other samples were of similar quality. The 
slopes of the molecular mass and radius cali- 
bration curves were determined by fitting the 

data in Table 1 for the 200, 400 and 950 kg/mol 
samples. The best-fit slope of log ,V vs. V, which 

Table I 

Peak molecular mass and rmb radius results for six polystyrene standards in toluene 

Nominal molecular Pci~k elutlon M (r’)’ ’ 
mass ( kg: mol ) \oIul11c (l-d) (kg:mol) (nml 

30 IS.YZ XY f 0.X 6 +I 

65 IT.51 h5 %I Y.7 -+ 0.4 

130 I h.-Kl IX,0 + (1.3 15.2 * 0.3 
200 15.18 2Oh.l) + 0.3 18.0 + 0.3 
300 l-I.OJ -lOh + I 26.X r 0.2 
950 12.30 %-I k2 15.1 f 0.2 

The nominal values are supplied by the manutacturer. Values for M ;md {r'}' ' iIre the values for slices at the center of the peaks. 
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is B in Eq. 2, is -0.209 + 0.002 ml I. The best- 
fit slope of log (r’) ’ ’ 
-0.128 * 0.002 ml-‘. 

vs. V, or D in Eq. 3. is 

If no broadening were present in the chro- 
matograms of Fig. 1. then the observed peak 
width w,,~,; would be due only to differences in 
molecular mass across the peak, and IV+, = MJ~,. 
We could then use w,, along with the calibration 
slope B to calculate A?,!M,, via Eq. 6. The 
above values for w,, and 5 give II?, iM,, = 
1.0122 + 0.0005. According to Eq. 18 the pres- 
ence of broadening makes the observed peak 

wider than with no broadening. Because the true 
width is aiways smaller than the observed width. 
this simple calculation therefore puts a rough 

upper bound on the sample’s polydispersity. 
Fig. 2 shows the rms radius as a function of 

elution volume across the peak of nominal 400 
kg/mol polystyrene. The 90” LS signal is 
superimposed. At the edges of the peak where 
the signal-to-noise ratio is low, the rms radius is 

uncertain. But across the center FWHM of the 
peak, the rms radius exhibits little variation. 
Since the radius calculation is independent of the 

DRI signal, delay volume and interdetector 
broadening are not factors. This makes the 

molecular radius an excellent parameter to ob- 
serve effects of column broadening. The oh- 
served flatness in Fig. 2 could have two causes: 
(i) the sample is extremely monodisperse. and 

the observed width of the peak is due entirely to 
column broadening; (ii) the sample has signifi- 

z 
-5 

35 

30 

25 

20 I 1 

13.5 14 14.5 15 
Elution volume (ml ) 

Fig. 2. Calculated rms radius as a function of elution volume 

for the sample of Fig. I. l‘hc 90’ LS signal is overlaid. 

cant polydispersity but has been broadened so 
much by the columns (in accordance with Eq. 
22) that the observed slope is near zero. To 
calculate the true polydispersity it is thus neces- 
sary to determine the amount of column 

broadening present. 
The unbroadened width w, for a narrow-dis- 

tribution sample can be calculated from Eq. 22 if 

we determine both D and Dabs as well as webs. 
The value of D was shown above to be -0.128 + 
0.002 mlP’. As determined above, webs = 0.54 2 

0.01 ml. The value of Dob5 can be obtained by 
fitting the radius data from Fig. 2 and finding the 
slope. The typical uncertainty in the radius 

measurements for each slice is about 0.3 nm, 
obtained from statistically analyzing the fluctua- 
tion in the LS data for the slices within the 

FWHM of Fig. 2. These uncertainties, combined 
with the radius data within the FWHM, yield 
D (,,,\ = 0.004 ? 0.005 ml- ‘. Analysis of a second 

injection of the same sample gives Dabs = 
0.0008 -+ 0.003 ml-‘. In other words, Dabs is zero 
to within its uncertainty, a result consistent with 

visual inspection of the FWHM region of Fig. 2. 
To be conservative, let us take two standard 
deviations of the slope with the larger uncertain- 

ty, or 0.01 ml -I, as an upper bound on the 
magnitude of Dubs. Mathematically, this means 

lDobsl < 0.01 ml-‘. Using two standard devia- 
tions gives a 95% confidence interval in the 
results. We then find from Eq. 22 that w0 < 

0.151 + 0.003 ml. Note that the unbroadened 
width is smaller than w,,_ by at least a factor of 
3.6. Thus almost all the observed width of 0.54 
ml is due to broadening. The limit on lDobsl is an 
upper bound, with 95% confidence, and so the 
value of w0 is also an upper bound. 

Finally, having determined we can apply Eq. 6 
to calculate the polydispersity. The result is M,/ 
h?, < 1.00096 + 0.00004. This is a surprisingly 

small polydispersity. To gain an understanding of 
why the result is so small, note that Eq. 6 implies 
that M,/A?, - 1 is proportional to wi. Earlier in 

this section we saw that assuming wg = webs 
implies a polydispersity of about 1.012. In fact 
w(, is smaller than webs by at least a factor of 3.6 

due to column broadening, and fi,/A?, - 1 is 
therefore smaller by the square of this factor, or 
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about 13. Thus the true polydispersity must be at 
least 13 times closer to unity than 1.012, or 
roughly 1.001. The theoretical lower limit for the 

polydispersity of the Poisson distribution is 1 + 
X ~‘, where x is the degree of polymerization [3]. 
For a 400 000 g/mol polymer with a repeat unit 

mass of about 100 gimol. x is about 4000. The 
theoretical lower limit is then 1.00025, about 
four times closer to unity than measured. Thus 

the polydispersity measured here, even though it 
is small, is consistent with the polymerization 
mechanism. 

peak widths were compared for two configura- 
tions: (i) the standard configuration used for the 
experiments described above, and (ii) the same 

configuration with an additional LS flow cell 
inserted in line between the columns and the LS 

instrument. The observed peak width w,,~~ in- 
creased by only about 5% in the second configu- 
ration, indicating that the great majority of the 
broadening occurred in the columns and not in 

the LS instrument. 

The values for ,~,/,I?, calculated from Eq. 6 
depend on the assumption of a Gaussian peak 
shape, but not strongly. Deviations from Gaus- 

sian peaks, for example extra peak tailing, show 
up as a somewhat different coefficient of B’wi in 
Eq. 6. A large change in this coefficient, even a 

factor of two, does not significantly alter the 
conclusions of this paper. The expression in Eq. 

22 for the change in apparent slope D depends 

on the peak and the broadening being Gaussian. 
Again, the dependence is not a strong one: as 
long as the peaks and broadening are approxi- 

mately Gaussian, the conclusions presented are 
valid. 

5. Conclusions 

A new technique was demonstrated using 

molecular radius values obtained by GPC- 
MALLS across a peak to calculate the polydis- 
persity of narrow-distribution standards. The 
sensitivity of the technique can approach the 

theoretical limit of the Poisson distribution. The 
upper limit obtained for a narrow polystyrene in 
toluene is much closer to unity than previously 
measured but still consistent with the polymeri- 
zation mechanism. 

In the case of Gaussian broadening, Hamielec 

and Ray [19] derived correction factors for the 
various molecular mass moments, assuming re- 
fractometer chromatograms are used. These ex- 

pressions assume a linear calibration curve but 
do not assume a Gaussian peak shape. Their 
results show that the necessary polydispersity 

correction factor is exp [ - (ln 10)‘B’w~iS In 2]. 
or 0.9890 5 0.0004. Applying this factor to the 
value 1.0122 obtained from the calibration curve 

and the DRI signal gives a corrected polydis- 
persity of 1.0011 -+ 0.0006, a value consistent 
with the results presented in this paper. This 

approach requires high precision in the knowl- 
edge of B and wcr in order to determine the 
polydispersity of a narrow standard. In contrast, 

the method presented in this paper requires 
placing an upper bound on the radius calibration 
slope from which small polydispersities may be 

calculated with relatively high precision. 

Appendix 

In this appendix we derive Eqs. 20 and 22. We 

begin with the expression for Mobs(V) in Eq. 19: 

I ~(y)Ny)W’- Y) dy 
4,dV) = 

i 

(Al) 
~Y)G(V- Y) d,l: 

Substituting the expressions for h(y), M(y), 

and G(V- y) from Eqs. 1, 2 and 16, respectively, 
we obtain 

1 -exp[-.I In 2(y-V,,)‘iwi] exp[-4 In Z(V-y)‘lw$]dy 

(AZ) 

To check whether the broadening was due to Noting that 10’ = exp(x In 10) and combining 

the columns or to the LS flow cell. observed the cxponentials gives 
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The exponentials in the integrals are quadratic 
polynomials in y, so we can use the standard 
expression 

with proper choices of II. b and c for the 

numerator (num) and denominator (den). 
quantities are: 

c = C\le n -4 In 2.[$+$] 

c I,““, = cdc,, + A In 10 

Our goal is to form the ratio 

These 

(AS 1 

(Ah) 

Substituting values from Ey. A5 and cancel- 
ling yields 

which can be rewritten as 

This expression is clearly linear in V with a 

slope RC,h:. given by 

B ,,,,\ = BW; i<w; + W;;) 

= BwZ /WZh, (A9) 

which is the required expression. 

For the mean square radius (PZ)Ubs(V), the 
derivation is analogous, and we obtain 

VW 

The quantities a, bden and eden are the same as 

in Eq. AS. The quantities b,,, and c,,, are 
given by 

h L” = II II 111 + B In 10 + 20 In 10 

c I, II 111 = (‘den + A In 10 + 20 In 10 (All) 

Substituting yields 

‘og W),,,,(Vl = 

Z[Vc1’: + V,,w& + (B + D)w~w~ In 1018 In 210 

lW; + WC; 

+A+X (A19 

which is linear in V with a slope given by 2Dwii 
(w>,‘, + \v:;). Note that this is the slope for the 
mean square radius; the slope for the rms radius 
is one-half this value. or 

which is the required result. 
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